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PLASTIC FLOW OF CONE-SHAPED BODIES* 

M.A. ZADOIAN 

glows of an ideal rigidly-plastic incompressible medium, in the shape of a cone- 

shaped body, are considered for different external effects. The problem of axisym- 
metric flow reduces to a system of two ordinary differential equationswhose solu- 
tions describe the limit state of conical tubes subjected to uniformly distributed 
annular tangential forces, normal and annular tangential forces, normal and long- 
itudinal tangential forces on the inner and outer surfaces. The combined bending 
and tension of a conical sheet and the flow of plastic mass between two-dimension- 
ally rough conical surfaces which are approaching exponentially in the annular 

coordinate are investigated. 

The axisymmetric radial flow of a plastic mass in convergent channels in the shape of a 
circular cone is investigated in /1,2/. The problem of the limit state of a conicaltubeunder 
uniform internal and external pressure is solved in /3/, while the solution of the correspond- 
ing elastic-plastic problem is constructed in /l/. The flow of plastic material between 
conical surfaces taken rough in the annular direction is investigated in /4,5/ for constant 
transverse velocities in this same direction. 

1. Fundamental Equations. The relationships of the theory of anidealrigidly-plastic 
flow in spherical coordinates have the following form in the usual notation: 

Equilibrium differential equations 

Relationships between strain rate, stress, and displacement velocity comments 

(1.2) 

Huber-Mises plasticity condition 

(c, - c# + (ae - a,# + (uW - a,)* + 8 (Q' + re(p" + TK) = 6 (1.3) 

Here and henceforth, the stress components are referred to the plastic constantk. It is 
convenient to represent the stress components in the form 

c,=ce+ -& (a,- QJ, %=fJe-+b,+h3) (1.4) 

rij=+Vij3 %=(e,*+ We + Eel + $9 + 6~ + y&f’* 

In a certain class of axisymmetric flows the stress and displacement velocity components 
can be expressed in terms ofthe unknown functions 
following form: 

f(8),+(8) and arbitrary constants in the 
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%e =+[g’+(P-kh)(2+il)f], Zv= “-‘)ff2’ *sin@ 

~ecp = w $‘sin0, S2 - {4hag2 - Wgh -+ 4/P + 

[g’ + (1 -a) (2 + S.)j]* + (A + 2)*sinP8 [*‘* f (6% - l)a **f)‘/* 

g = f + @I#, h = (h + I)f’ - fCt& h = const 

24 = fig* Y = -(n + 2)?9, W = (h + 2)*Sin0 + Crsini3 

(1.51 

Here and henceforth the letters of the upper case of Roman alphabet denote arbitrary con- 
stants. 

The expression 

~e~--H+Mlnr- 35Tredw- z(h.f2)S(f'--ftge)ctge~ (1.6) 

and the system of two ordinary nonlinear differential equations in f and $ 

1 sine 8 v + 0 a 8)’ + (1 - J.)(2 + q !I)’ + 

+(fsinO)'+Msin@=O 

i 
_&$+3(&4)+"~4 

(1.71 

follow from the equilibrium equations (1.1) and the relations (1.5). 
The boundary conditions for the system (1.7) are determined by specific flaw conditions. 

For h. =-_2,*t=;C=O we have the radial flow case considered in /1,2/. 

2. Torsion of a conical tube by annular tangential forces acting on the 
side surfaces. We assume that tangential. distributed Loads 

zecp = q1 as B = a, fW = q, as 0 = B (2.1) 

are applied to the inner and outer side surfaces of a long conical. tube. 
Upon substitution of f(e)=O,M = H = Ointo fl.S- (l-7), we obtain o~=@B=:~I+= 

l;lf)=o, u=v=o. The second equation in (1.7) can, if the subscripts on z* axe removed, be 
written in the form 

T' + 22ctge + 3fiT= 0 (2.2) 

T = I#' [?/I'S + (I - I)%#"]"/*, 5 J; 1 (2.3) 

The solution of equation (2.2) can be obtained in quadratures. By introducing the new 
function Z(5) 

and then the function 

equation (2.2) reduces to a linear differential equation in z whose solution has the form 

The quadrature obtained in expressed in terms of an elliptic integral of the first kind. 
In the long run, by taking account of the first boundary condition from 12.1) I we obtain 
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where we used the notation 

T (5, Y) = (5 cos y + m sin y)'/c 

Utilization of the second boundary condition in (2.1) yields the relationship 

(2.7) 

The relationship (2.7) imposes a connection between the values of q1 and q. whichshould 
be conserved in the limit state of the conical tube. 

From (2.3) we determine q(9) 

(2.81 

3. Conical tube subjected to the combined action of normal and annular 
tangential forces. We assume that distributed normal and tangential forces 

ct, = -PI, Tee = q, as 8 = a; 00 = -pz, ~w = q2 as 0=fi (3.1) 

act on the inner and outer surfaces of a long conical tube. 
If we take f= E/sin 0, b = 1, M = 0 in the relationships (l-S)- (1.7), then the first 

equation in (1.7) is satisfied identically, and upon taking account of the boundary condition 

on the inner surface we will obtain from the second (we omit the subscripts on the '%) 

sin?a 
~=~'sina8(4E2cos20+~f2sins~)-'~~, %=ql. sm’ tl (3.2) 

By hence determining $', substituting in the normal stresses (1.5) and (1.61, and taking 
account of the boundary conditions on the inner surfaces, we have 

crI=oe+<m, o,=oe+2tim 
cre = -pl + T (r, sin 8) - T (a, sin a) 

T (5, y) = In II + f-1 -ffx + 2 In y 

(3.3) 

The conditions on the outer surface govern the following connection betweentheparameters 
pi,qi, which should be conserved in a definite state of the conical tube 

PI - ~2 = T (921 sin B) - T (ql, sin a), q2 sin2 p = q1 sin* c (3.4) 

There follows from (3.2) 

II= * [_ - ml+ const 

If the values of f are taken into account, the displacement velocities will be 

(3.5) 

(3.6) 

Formulas /3/, corresponding to the limit state of a conical tube for internalandexternal 
pressure are obtained from the preceding formulas for q1 = 0. 

Upon going over to cylindrical coordinates and fixing rsine, the formulas for the stress 
follow from the (3.3) and (3.4) obtained, as r-+oo, e-+0: 

ur = -PI + T (~9 r) - T (41, a) (3.7) 

oe=u,-2-, zrg=rCql$ 

while relationships for the limit state are obtained from (3.4) 

PI - ~2 = T (q?, b) - T (ql, 4, q# = qd (3.8) 

The formulas (3.7) and (3.8) determine the ultimate state of stress of a cylindricaltube 
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in cylindrical coordinates, where a and b here and henceforth denote the inner and outerradii, 
respectively. 

The expressions (3.7) for the stress agreee with the Nadai formulas /6/ referring to the 
stresses in the plastic domain surrounding a circular cavity in the infinite plane. 

Fig.1 

4. Conical tube subjected to the combined action of normal and longitud- 
inal tangential forces (Fig.1). We consider the limit state of a long conicaltubewhen 
normal pressures -pr, -ps and tangentially distributed forces ql, qB parallel to the generat- 
rix, respectively, act on the inner and outer side surfaces. 

Assuming $(0)~0, k=M=Oin (1.5)- (1.71, and omitting the subscripts on the re,we 
obtain 

2V(f'- fct e) 
f==q~s, a=+, v=Gzn(f--_ctg@) 

(4.1) 

Substituting these expressions in (1.5) and (1.6) , and taking account of the condition 
on the inner surface, we find 

(4.2 

Satisfying the conditions on the outer surface 0 = p we arrive at relations determining 
the limit state of the conical tube in terms of loads 

PI - Pz = T (991 B) - T (ql, a); pa sin2 /3 = q1 sin* a (4.3) 

The displacement velocities can be taken in the form 

lb = f’ + f ctg 8, Y = -2f, w = 0 14.4) 

Comparing the formula for the tangential stress from (1.5) with the expressions (4.11, 
we arrive at a linear differential equation in f 

f”-l- (ctge-+#+ (2-&@+*cre)f=” 

whose general solution will be 

The formula /3/ 

Pl 
sin $ 

--p,121nx 

(4.5) 

(4.6) 

follows from (4.3) for gl== q2 = 0. 
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The solution in /3/ corresponds to h = I,$ = 0, etc. in the case under consideration, 
while according to /3/ the corresponding velocity field has the form u = w = 0, V=NdSiHe. 
The displacement velocity field corresponding to the case under considerationhereh = 0, $ = Cl, 
etc., is determined from (4.41, where 

f=C1sin8+ Czctg9+ +sin0ln 
1+CDSe 

I-cos0 
(4.7) 

Going over to cylindrical coordinates, setting rsin0 as r+ 03, 0+0, we obtain from 

(4.2) and (4.3) 

(Jr = --P1 + T, (.c, r) - To (91, a) 

oe=a,+2{~, (5, = 0, + {n, r,, = z = q1 ah 

T,(Z, y) = 2 111 [I + ~TTSl - 2 fi-Y?I + 2 In y 

In cylindrical coordinates these formulas determine the limit state of stress of a cylind- 
rical tube under the combined action of normal pressures and distributed tangential forces. 

5. Bending and tension of a conical sheet (Fig.2). Let a sheet in the form of 

asectoras along conicaltubebeinthelimitstate underthe combinedeffectofdistributedbending 
moments and tensile forces applied to the axial endface sections. The law of variation of 
these forces along the generators must be determined. 

We seek the displacement velocity field in the form 

u = 0, v=3r Actge-&-ccc+ 
( 

w=3r(Acpsine+Ccosesincp) 

Then the strain rate components different from zero will be 

The corresponding stress components are determined from the equations (1.1) and (1.4) 

0~ = se -v, ue = ue - 2~7, ue = -If - 2vInsin 8, v = sign se 

It follows from the condition of no loading on the inner surface 

u,=-oe- 1, ue=Q-2, oe=-21n~ (a<0<r) 

where 0 = y is the neutral surface of the layer. Taking account of the conditions 8 = $ on 
the outer surface, we determine 

From the condition of continuity of ce on the surface e=y we find 

siny = sin a sin fl 

Fig.2 Fig.3 
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The limit bending moment relative to the axis % = 0 per unit length will be 

Bending moments relative to axes perpendicular to the axis 
endface sections rp = -&+I, are zero. 

8 = 0 and lying in theaxial 
Indeed, by expressing ucp from the first equilibrium 

equation (1.1) for the case under consideration, we obtain 

B 

The ultimate tensile force in the sections cp = f~ will be 

Assuming eqr = 0 on the surface 0 = y and clamping the line 9 = 0, % = y, we find 

e, a-eg=r: &- (co9 y - cos e) 

&= sinycosq,- 
i-cosycose 

sin0 

u-0, ~=,cosysin%-sinycose.sinrp 

Upon going over to cylindrical coordinates and fixing rsin% as ?+-+a, %+OtheHill 
solution /7/ is obtained from the formulas obtained for the bending of a cylindrical sheet 
(in particular, M, = (b - a)VZ, T, = 0). 

6. Flow of a plastic mass between rough conical surfaces (Fig.3). The prob- 
lem of the limit state of a plastic material, between rigid rough slabs was first investigated 
by Prandtl in 1%~' under plane strain conditions. The theory of the flow of plastic material 
over rigid surfaces was later developed and extended in /l- ?/,9-12,131. 

The problem of the plastic flow between rigid rough conical surfaces is studied in /ll/. 
In contrast to the problem under consideration in which the transverse displacement velocity 
is considered an exponential function of the azimuthal coordinate, 
constant in the designated coordinate in /ll/. 

this velocity is assumed 

Let us examine the problem of the flow of an incompressible ideally plastic mass between 
two-dimensional rough conical surfaces as they come towards each other according to the law 

y =I w,re-Pial as % = a, u = -_o$@llPl as 6 = @ (6.1; 

where WI? 029 P are given constants. Because of symmetry, we consider the domain O,<cp,< 
(&Jo* We assume the tangential stresses occurring in the contact surfaces /1,9/ are cansiderab- 
ly less than the material yield under the shear and equal, respectively: 

r,e = ml, Zecp = ql, 9 = a (6.2) 
rre = -m,, z&# = -(I*, % = fi 

evidently mia f qiz( 1. 
We seek the stress and displacement velocity components in the form 

Up= ce+ $f', u*=c ++(f'-ul) (6.3) 

‘rq-- ---*(f'+(p), B=[(f'+~~'-tgj0'sin%+~-gj2+ 

(4+ &)(f' + V+ 4(2f'--)(f'- Z(D)I" 

u = r (f’ + a) e-&o, u = --Jrfe+Q, w = 3nje+* sin 0 (6.4) 

where f and 11, are arbitrary functions of 8, while @ =fetg% + P$. 
Substituting (6.3) into the equilibrium differential equations (l.l), we arrive at the 

expression 
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(6.5) 

and the system of two ordinary differential equations with the boundary conditions 

1’ q (f -I- a)]’ + y(f'+@)'+Msin0=0 

I' 
G($ sinzO+~f)]'-~(f'+~)+~sin~=O 

f = - w,/3 as 0=a, f=w$ as 9=fi 

(6.6) 

(6.7) 

+ (f’ + CD,)’ = 
i 

ml B=a 
3 

glO=a 

-m2fj=~' T 
($fsin6+& = 

) 1 --Pa6=B 
(6.8) 

Taking into account the expression for the tangential stresses (6.3) and introducing the 

notation B = A + l&M, we find 

Zm=T - *7,.8, z- “yifl;” 

Using the boundary conditions (6.2), we obtain from (6.9) 

B=[ 91 sin% a + q. sin2 b + 

+-p(mlsinz+m~sin~)] (cosa-cosfJ)-1 

C = [ql sin* a 009 fi + q. sin* p Cos a + I/* p (m, sin a x 
cos b + m2 sin /3 cos a)] (cos a - cos p)-l 

(6.9) 

(6.10) 

The relationship (6.9) can also be represented in the form 

(6.11) 

which, in combination with one of equations (6.61, forms a system of differential equations 
governing the functions f(0),*@) and the constants A and C under the boundary conditions 
(6.7) and (6.8). 

Introducing the 
duced by one order. 
radial direction are 

we will have 

new functions X= f’lf, y=$/f, these differential equations can be re- 
In the particular case when m, = m, = 0, i.e., the conic surfacesinthe 
ideally smooth, then by setting 

f’+a,=M=O (6.12) 

B-A= q1 sinpa + q,sirPp 
wsa-co3g * 

c= ~~aiaracosB+q~sin~~cosa 
cosa-cosg 

a=*. v==signf’, 7e8-~51(p=~=0 

'cge=z= qlsin*a(cose-c~B)-ppsi3B(cosa-cose) 
(cesa- cos p)sinaB 

(6.13) 

(6.14) 

The first equation of (6.6) transforms into an identity, and from (6.11) we arrive at the 
differential equations 

which defines f(0) under 
For normal stresses 

(6.15) 

(6.16) 

Taking into account that the endface sections of the layer cp = +c~~ are load-free, we 

1’+(we-*+g)f’-+&gf=O 

the conditions (6.7). 
we obtain 

ur=ae+m, uc==as+2~~ 
8 

ae=-H-A((cpo- cP)+q~ctgede 
0 
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obtain the condition fox zero sum of the moments of the forces with respect to the axis t, =Q, 
acting on an arbitrary part of the layer on a section of length dr between (r‘ and CF~ 

o,sin0d6 -j-&sina+ g&nS)(mo - cp)= 0 (6.17) 

Hence, there is determined 

The pressure, acting per unit length, on the contact surface 9 =: a will equal 

pa=-2rsina (Uecosq-7~sin~)tk~d~ f 
0 

from which it follows 

pa = 2r sin a [Hsin rpO + (1 - cos cp,) (A + qJ1 

Going over to cylindrical coordinates and setting rsin0 for T-+W and 
tain from (6.141, (6.161, (6.18) and (6.19) 

a?=- Ha-” 2A*(Ba--‘Y)S2@=-7~ 
(I 

w- -a,+ZZv, a,=a,+m 

pI1 = 2n tH* sin 'pO $ (1 - cos (pO) (A, + %)I (6.22) 

(6.18) 

(6.19) 

(6.20) 

O-+0, we ob- 

(6.21) 

These formulas determine the ultimate state of stress of a cylindrical layer in cylind- 
rical coordinates, when the layer is compressed between two coaxial cylindrical surfaces u = 
ute-plsi for P =a, u =: --up*lOl and for r = b. If we go over to rectangular coordinates 

for r-c 00 and q-+0, the Prandtl formulas /8/ follow from (6.21), fox the ultimate state of 
a rectangular layer during its compression by parallel rough slabs. 

1. 
2. 

3. 
4. 

5. 

6. 

7. 
8. 

9. 
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